Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecology ; 102(4): e03301, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33565639

RESUMEN

Herbivory is ubiquitous. Despite being a potential driver of plant distribution and performance, herbivory remains largely undocumented. Some early attempts have been made to review, globally, how much leaf area is removed through insect feeding. Kozlov et al., in one of the most comprehensive reviews regarding global patterns of herbivory, have compiled published studies regarding foliar removal and sampled data on global herbivory levels using a standardized protocol. However, in the review by Kozlov et al., only 15 sampling sites, comprising 33 plant species, were evaluated in tropical areas around the globe. In Brazil, which ranks first in terms of plant biodiversity, with a total of 46,097 species, almost half (43%) being endemic, a single data point was sampled, covering only two plant species. In an attempt to increase knowledge regarding herbivory in tropical plant species and to provide the raw data needed to test general hypotheses related to plant-herbivore interactions across large spatial scales, we proposed a joint, collaborative network to evaluate tropical herbivory. This network allowed us to update and expand the data on insect herbivory in tropical and temperate plant species. Our data set, collected with a standardized protocol, covers 45 sampling sites from nine countries and includes leaf herbivory measurements of 57,239 leaves from 209 species of vascular plants belonging to 65 families from tropical and temperate regions. They expand previous data sets by including a total of 32 sampling sites from tropical areas around the globe, comprising 152 species, 146 of them being sampled in Brazil. For temperate areas, it includes 13 sampling sites, comprising 59 species. Thus, when compared to the most recent comprehensive review of insect herbivory (Kozlov et al.), our data set has increased the base of available data for the tropical plants more than 460% (from 33 to 152 species) and the Brazilian sampling was increased 7,300% (from 2 to 146 species). Data on precise levels of herbivory are presented for more than 57,000 leaves worldwide. There are no copyright restrictions. Please cite this paper when using the current data in publications; the authors request to be informed how the data is used in the publications.

2.
Sci Rep ; 11(1): 1153, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441896

RESUMEN

The tomato pinworm Tuta absoluta (Lepidoptera: Gelechuidae) is native to South America and has now become the main tomato pest in Europe, Africa and Asia. The wide range of host plants attacked by this pest has been reported as one of the main reasons for the success of this important insect species. However, the information currently available on the biological performance of T. absoluta on Solanaceae has been obtained from a limited number of host species. The Solanaceae family is composed of thousands of species, many of which are potential hosts for T. absoluta. Our results showed that the highest oviposition rates occurred on cultivated tomato plants, potato and wild tomato. The lowest rates occurred on "gilo", "jurubeba", green pepper and pepper. The highest survival rates of the immature stages occurred on potato and the lowest on pepper, green pepper and "jurubeba". Female fertility, following infestation of the different plant species, was highest for insects that developed on tomato or potato and the lowest rates were seen on American black nightshade. The net reproductive rate and the intrinsic growth rate were highest on potato and tomato. Cluster analysis grouped tomato and potato as highly susceptible to attack, American black nightshade, juá, eggplant, gilo and wild tomato as moderately susceptible, whilst pepper, green pepper and jurubeba were categorized as resistant to T. absoluta. These results clearly demonstrate that the choice of solanaceous host plant species has a direct impact on the fitness parameters of the tomato pinworm as well as survival potential, dispersion and establishment at new sites. These results are important for the planning of integrated pest management strategies.


Asunto(s)
Lepidópteros/anatomía & histología , Oviposición , Solanaceae/parasitología , Solanum lycopersicum/parasitología , Animales , Femenino , Fertilidad , Especies Introducidas , Lepidópteros/fisiología , Masculino , Enfermedades de las Plantas/parasitología
3.
J Econ Entomol ; 110(3): 865-874, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334246

RESUMEN

The knowledge of the spatiotemporal dynamics of pathogens and their vectors is an important step in determining the pathogen dispersion pattern and the role of vectors in disease dynamics. However, in the case of mango wilt little is known about its spatiotemporal dynamics and the relationship of its vector [the beetle Hypocryphalus mangiferae (Stebbing 1914)] to these dynamics. The aim of this work was to determine the spatial-seasonal dynamic of H. mangiferae attacks and mango wilt in mango orchards and to verify the importance of H. mangiferae in the spatiotemporal dynamics of the disease. Two mango orchards were monitored during a period of 3 yr. The plants in these orchards were georeferenced and inspected monthly to quantify the number of plants attacked by beetles and the fungus. In these orchards, the percentage of mango trees attacked by beetles was always higher than the percentage infected by the fungus. The colonization of mango trees by beetles and the fungus occurred by colonization of trees both distant and proximal to previously attacked trees. The new plants attacked by the fungus emerged in places where the beetles had previously begun their attack. This phenomenon led to a large overlap in sites of beetle and fungal occurrence, indicating that establishment by the beetle was followed by establishment by the fungus. This information can be used by farmers to predict disease infection, and to control bark beetle infestation in mango orchards.


Asunto(s)
Ascomicetos/fisiología , Mangifera/microbiología , Enfermedades de las Plantas/microbiología , Gorgojos/microbiología , Animales , Brasil
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...